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ABSTRACT
Global pandemics, such as COVID-19, significantly impact mental
and physical well-being. Regular home workouts become more
critical during these extraordinary times, as physical activity can
positively impact our health. Having the ability to track workout
progress motivates consistent home workout schedules. In this
paper, we demonstrate two proof-of-concept implementations en-
abling the tracking of home workouts. First, we demonstrate exer-
cise tracking when the user wears a smartphone relying on IMU
data. Second, we show tracking when a doffed phone is placed in
front of the user while relying on inaudible Doppler sensing.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Applied computing→ Consumer health.

KEYWORDS
Mobile Human Activity Recognition, Activity Tracking, Pandemic,
Home Workout, Smartphone, Machine-Learning, Neural Networks

ACM Reference Format:
Denys J.C. Matthies, Thorleif Harder, Franz Bretterbauer, Viktoria Ginter,
Horst Hellbrück. 2021. FitFone: Tracking HomeWorkout in Pandemic Times.
In The 14th PErvasive Technologies Related to Assistive Environments Confer-
ence (PETRA 2021), June 29-July 2, 2021, Corfu, Greece. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3453892.3461334

1 INTRODUCTION
Pandemic times have a tremendous impact on our physical and
mental well-being [9], given strict social distancing conditions [10]
and reduced possibilities for physical activity [13, 20]. Performing
regular workouts is key factor in maintaining health, which physi-
cians recommend [24]. Yet it is unclear whether outdoor workouts
are significantly healthier than those performed indoors [26]. To
date, research has shown that tracking outdoor workouts has in-
creasingly become of interest, as it serves as a motivational factor
for consistency in exercise routines [21]. Given this, tracking indoor
workouts can be of essential importance to maintain health during
pandemic times.
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MotionFone SonicFone
Figure 1: MotionFone: Relying on accelerometer and gyro-
scope data. The smartphone remains in the pocket. Son-
icFone: Relying on ultrasonic sensing. The smartphone is
placed in front of the user.

In this paper, we contribute with an artifact [30], a smartphone-
based indoor workout tracking. We explored two different technol-
ogy approaches (see Figure 1):

• MotionFone: Using accelerometer & gyroscope
• SonicFone: Using speaker & mic. (Doppler sensing)

2 RELATEDWORK
Nowadays, typical Human Activity Recognition (HAR) relies on
pattern recognition by machine learning [15]. HAR can be divided
into six fields: Gesture, Events, Behaviors, Group actions, Atomix ac-
tions, and Human-to-Human/Object Interactions [27]. Traditional
sensing methods of workout activity is vision-based [8, 23]. How-
ever, in Mobile HAR [16], we affix the sensor to the human body
through wearables [5]. The variety of sensors incorporated in smart-
phones contributed to their prevalence for tracking purposes [2].

2.1 Motion Sensing
An Inertial Measurement Unit (IMU) [22] is a motion sensor device,
which is fully microelectromechanical [14]. An IMU usually in-
corporates accelerometers, gyroscopes, and magnetometers. Using
these particular motion sensors, we can identify a variety of human
activities following Lara et al. categorical grouping [17]: Ambu-
lation (walking, running, sitting,...), Transportation (riding a bus,
cycling,...), Phone Usage (Text messaging, call,...), Daily Activity
(Eating, drinking, reading,...), Exercise / Fitness (rowing, weight
lifting,...), Military (crawling, kneeling,...), and Upper Body (Chew-
ing, speaking, swallowing,...). Focusing on the motion sensors of
smart devices, such as wearables and smartphones, researchers have
demonstrated the capability to identify a great number of Ambula-
tion and Transportation activities [11]. Meanwhile, using gesture
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Table 1: Comparison of average accuracy (F1 score) for each tree classifier.

Classifier BFTree CDT J48Consol. RandomTree SimpleCart J48 J48graft SPAARC JCHAIDStar DPCTree REPTree

Acc. 94% 78% 94% 94% 94% 92% 90% 88% 86% 94% 78%
Gyro 86% 80% 82% 64% 86% 86% 84% 84% 88% 80% 80%

recognition with smartwatches is more common in Mobile HAR
[29, 31]. Smartwatches became powerful in sensing a great variety
of activities, such as detecting the tool being used [19] or tracking
cardio-workout activity [25]. Tracking running performance based
on the steps collected by the smartwatch of smartphone is most
common, albeit accuracy differences are significant [3].

2.2 Sonic Sensing
Identifying performed activities via the emitted sound has been
previously demonstrated with devices that emit considerable noise,
such as a drill, jackhammer etc. [6, 19] Another method is utilizing
an ultrasound wave, which is undetectable to humans. Watanabe
at el. [28] instrumented a user with speakers and microphones for
movement sensing, and gesture and context-recognition. The same
principle can be used with a consumer smartphone to detect motion.
Fu et al. [7] demonstrated an exercise monitoring using consumer
smartphones. Ultrasonic sensing have also shown the capability
to detect the following home workout exercises: Bicycle, Squats,
and Toe Touches. Their basic implementation utilizes a frequency
of 20kHz, while positioning the smart phone within a two-meter
reach of the user.

3 MOTIONFONE
As users usually have a smartphone, the goal was to develop a
mobile app that can be downloaded and installed. The app should
be able to display activities and have a stopwatch feature to record
and save the duration of different activities performed. For this
purpose, a machine learning approach is used.

3.1 Scope
Our first implementation demonstrates the utilization of motion
sensors from the Inertial Measurement Unit (IMU), namely the
accelerometer and gyroscope. In our application, the smartphone
should rest in the user’s pocket while they perform activities. When
choosing our activities, we concentrated on fitness activities that
address the entire body. We decided to record four activities and
several resting activities. The resting activities were grouped into a
single activity named "default". The resulting classes are:

• climbing
• jumping jack
• running on spot
• stretch jumping
• resting (default)

3.2 Model Development
3.2.1 Data Recording. For the model training, we recorded data
on the selected activities. For recording, we implemented a self-
developed data collector. The collector is an application that records
data from selected IMU-sensors. Many frameworks, such as Flutter
[18] only provide a low sample rate. To change that, we used an
adapted version of the Flutter’s package sensors.

Eventually, we recorded 25 training datasets and 10 test datasets
per class/activity. To achieve a robust model, care was taken to
ensure that the activities varied accordingly during recording. All
activities were recorded at different intensities and speeds. More-
over we varied the surfaces on which we performed the activities,
such as jumping jack, running-on-spot, and stretch-jump. The rea-
son is that different surfaces produce distinctive degrees of bounce
and damping. Five training data sets and two test data sets were
recorded on each of the following surfaces: tiles, long pile carpet,
short pile carpet, laminate, and parquet. In the stretch jump activity,
we also varied the object that the user jumped on: high couch, low
couch, medium-high basket couch, (low) windowsill, and dining
room chair. The data was recorded, with a sampling rate of 48 Hz.
A window size of a little more than two seconds a total of 98 values
were also recorded. Two seconds were chosen because activities,
such as the stretch-jump and the climb, can take up to 1.5 seconds,
depending on the variation of the execution.

3.2.2 Feature Calculation. We developed our model based on our
previously recorded dataset. First, the data from our raw files (con-
taining: AccX, AccY, AccZ, GyrX, GyrY, GyrZ, className) stored in a
.csv file was cleaned, meaning each number of recorded activity had
an exact size of 98 samples. The newly generated file was converted
into an .arff file by a self-built feature generator. Initially, the fea-
ture generator was developed in Java as a command line program.
However, for our real-time classifier, we implemented a feature
generator running on the phone using Dart [4]. Our app calculated
six statistical features (mean, median, sum, standard deviation, min
element, max element) for all axis together (3d vector norm), and
for each individual axis separately to prevent missing characteristic
motion that might only be present on a single axis.

3.2.3 Classifier Selection. The goal was to find a computational
inexpensive classifier that can run in real-time on the phone. We
generated two separate .arff files containing two independent sets:
training.arff and test.arff. We evaluated the following algorithms:
BFTree, CDT, DPCTree, J48, J48Consolidated, J48graft, JCHAINStar,

standardDeviationALL

sumY

medianY

standardDeviationX

sumXmaxElementX

standardDeviationALL

default

stretch-jump

jumping-jack

jumping-jackrunning-on-spotjumping-jackclimb

< 6.16305 >= 6.16305

< -654.23494 >= 654.23494

< -4.07393 >= -4.07393

< -4.97445 >= -4.97445

< 16.384 >= 16.384 < -19.9787 >= 19.9787

Figure 2: Generated Tree (Classifier: BFTree).
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Figure 3: For the data collection, we tested two different phones, a Redmi Note 7 (left) and a Redmi K20 Pro (right). Although
the phones had similar equipment, the recorded data varied substantially, which is shown by the plotted data of the jumping
jack exercise. The data taken by Redmi Note 7 demonstrates clearer signal patterns.

RandomTree, REPTree, SimpleCart, and SPAARC with the Weka
Data mining tool [12]. Then, we calculated models and compared
their accuracy (see Table 1). In considering the overall accuracy
and standard deviation, the classifier BFTree showed best results.
Figure 2 shows the generated tree.

3.3 Real-Time Classifier
The real-time classifier of our mobile app was developed in Dart
and collects motion data with a sampling rate of 48Hz, after the
routine sensor_start() was manually triggered.As soon as a total
of 98 data samples (corresponding to the selected window size of
2s) were collected, the app starts classifying the signal based on
the previously calculated BFTree (see Figure 2). We implemented a
sliding window approach with an overlap of a single sample (~1%).
The detected activity is displayed once detected at least 24 times in
a row. This condition is necessary to prevent new activities from
being detected all over. We run an evaluation with an unknown
user asking him to perform all exercises in a random order for 20
seconds ≈ 10 times (see Figure 4).

a b c d e <
90 0 0 0 10 a -  climb
0 100 0 0 0 b -  default
10 0 90 0 0 c -  jumping-jack
0 0 0 100 0 d -  running-on-spot
10 0 0 0 90 e -  stretch-jump

Figure 4: ConfusionMatrix [in %] showing 50 trials (10x each
activity) resulting in an accuracy of ~95%.

4 SONICFONE
In our second prototype, we design and implement a home workout-
tracking approach without having the smartphone in physical con-
tact with the exercising user.

4.1 Scope
We developed a smartphone application that utilizes ultrasound.
Ultrasound waves are emitted through the smartphone’s speaker
and picked up by the microphone. Making use of the Doppler ef-
fect concept and machine learning, we can identify the following
movement activities around the device:

• jumping jack
• squat
• push up
• resting (default)

4.2 Model Development
4.2.1 Data Recording. We developed a mobile app based on an
Android, similar to our previous app. However, we used Flutter to
create the user interface of the application, audioplayers library
to play the 20kHz sound, and flutter_sound for recording with a
sample rate of 44100. The 20 kHz sound was created using Au-
daCity [1], both the played and recorded file had the .wav format.
Although Flutter supports both IOS and Android, the libraries are
only compatible with Android.

All activities were recorded multiple times in different rooms
on hard ground surfaces. At the beginning, the user places the
smartphone in front of him. After choosing the activity, the user
pushes ‘start’ and performs the exercises. ’Stop’ is pushed when
the participant is done. Depending on the device, the signal can
show significant differences in signal quality (see Figure 3).

At the beginning, we check the microphone data for corrupted
samples and exclude sounds below 17kHz using a high pass filter.
First, we recorded a large amount of data containing 520 exercise
executions. Then, we labeled and divided data into segments with
a sampling rate of 88,200Hz to catch any frequency shifts.

4.2.2 Neural Network Training. Next, we divided our recorded
dataset into training and test data, with a 20% test size fed to the
sequential model. A sequential model API is a recurrent neural
network, which is powerful for modeling sequence data like sinu-
soidal waves. The sequential model used contains a stack of linear
layers (12), which are responsible for an automated machine learn-
ing in neural networks. Our first Dense layer connects our input
data (128 units) with an Activation layer, a ReLu. The Activation
layer finds whether a neuron is activated or not and transforms
the input making it non-linear, thus improving the learning. While
there are several kinds of activation functions, the two used here
are ReLu and Softmax. A Relu checks whether the values are zero
or smaller and sets it to zero once it is negative. The bigger the
value the larger the activation. An additional ReLu is connected
with another Dense Layer of 256 units. Then, we introduce a Batch
Normalization to enable a better comparison when all units are
put on the same scale; this can improve training speed and prevent
imbalanced gradients. Via a 256 Dense layer, we connect to a Soft-
max Activation layer. A Softmax function outputs the probability
to which class the data may belong. Before introducing a Dropout
of 0.5, we connect another ReLu with a Dense layer of 256 units. A
Dropout is strongly suggested, as it aims to reduce the complexity
of the model to prevent overfitting. We now reduce Dense layer
by the number of labels. The output is re-scaled at a final Softmax
Activation layer.
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4.3 Accuracy Results
The results of this study might not be representative, as we only
tested our app with two devices. Not every smartphone is capable
of achieving such results based on the difference in sensor quality.
Furthermore, execution styles might also differ. In our case, we
trained our model based only on two different users. We validated
our model with a set of 108 trials (see Figure 5).

a b c d <
97 0 0 3 a -  jumping-jack
0 96,2 0 3,8 b -  squat
0 0 100 0 c -  default

2,13 0 0 98 d -  push up

Figure 5: Confusion Matrix [in %] showing 108 trials result-
ing in an accuracy of ~98%.

With the implementation of a Batch-Normalization-Layer, the
accuracy improved from 96% to around 98%. We performed several
other tests at which we trained our model with fewer trials and also
with both mobile devices (Redmi Note 7 and a Redmi K20 Pro). The
confusion somewhat remained at 2%, as most confusions occurred
with push-ups.

4.3.1 Limitations. Although accuracy seems high, one needs to
consider that our conditions were optimal. An ultrasound tracking
is limited by its distance and functionality of the phone’s hardware
capabilities as Figure 3 demonstrates. Additionally, many electronic
devices generate ultrasound frequencies that could interfere and
reduce accuracy.
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Figure 6: Display the received signal for all activities and the
default sinus wave.

5 CONCLUSION & FUTUREWORK
In this paper, we presented two approaches to track home workout
using a consumer smartphone. This use case becomes increasingly
important during pandemic times, such as the current COVID-19
pandemic. With our first example application, we demonstrate the
tracking via motion sensors (accelerometer and gyroscope) when
the device is worn by utilizing a conventional machine learning
approach. Our second example application demonstrates tracking
when the device is doffed in front of the user.

We envision future mobile apps to utilise similar tracking ap-
proaches with a greater range of supported exercises. A major
challenge seems to be the technical support of different types of
devices. An opportunity with body-worn devices is to additionally
consider gathered vital signs to adjust the workout plan.

REFERENCES
[1] Installing Audacity. 2013. What is Audacity. (2013).
[2] Rafael Ballagas, Jan Borchers, Michael Rohs, and Jennifer G Sheridan. 2006. The

smart phone: a ubiquitous input device. IEEE PerCom 5, 1 (2006), 70–77.
[3] Meredith A Case, Holland A Burwick, Kevin G Volpp, and Mitesh S Patel. 2015.

Accuracy of smartphone applications and wearable devices for tracking physical
activity data. Jama 313, 6 (2015), 625–626.

[4] Dart. 2020. Programming language. https://dart.dev
[5] Don Samitha Elvitigala, Denys J. C. Matthies, ChamodWeerasinghe, and Suranga

Nanayakkara. 2021. GymSoles++: Combining Google Glass with Smart Insoles
to Improve Body Posture when Performing Squats. In PETRA’21.

[6] Shaikh Faizan. 2017. Getting Started with Audio Data Analysis (Voice) using
Deep Learning, Analytics Vidhya, 23 August 2017. 25 (2017).

[7] Biying Fu, Dinesh Vaithyalingam Gangatharan, Arjan Kuijper, Florian Kirchbuch-
ner, and Andreas Braun. 2017. Exercise monitoring on consumer smart phones
using ultrasonic sensing. In iWOAR’17.

[8] Preetham Ganesh, Reza Etemadi Idgahi, Chinmaya Basavanahally Venkatesh,
Ashwin Ramesh Babu, and Maria Kyrarini. 2020. Personalized system for human
gym activity recognition using an RGB camera. In PETRA’20. 1–7.

[9] Marina Garriga, Isabel Agasi, Ester Fedida, Justo Pinzón-Espinosa,Mireia Vazquez,
Isabella Pacchiarotti, and Eduard Vieta. 2020. The role of mental health home
hospitalization care during the COVID-19 Pandemic. Acta Psych. Scand. (2020).

[10] Michael Greenstone and Vishan Nigam. 2020. Does social distancing matter?
University of Chicago, Becker Friedman Institute for Economics 2020-26 (2020).

[11] Marian Haescher, John Trimpop, Denys J. C. Matthies, Gerald Bieber, Bodo Urban,
and Thomas Kirste. 2015. aHead: considering the head position in a multi-sensory
setup of wearables to recognize everyday activities... In HCII. Springer, 741–752.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. 2009.
The WEKA data mining software: an update. ACM SIGKDD 11, 1 (2009), 10–18.

[13] Marc Ashley Harris. 2018. The relationship between physical inactivity and
mental wellbeing. Health psychology open 5, 1 (2018).

[14] Jack W Judy. 2001. Microelectromechanical systems (MEMS): fabrication, design
and applications. Smart materials and Structures 10, 6 (2001), 1115.

[15] Eunju Kim, Sumi Helal, and Diane Cook. 2009. Human activity recognition and
pattern discovery. IEEE pervasive computing 9, 1 (2009), 48–53.

[16] Oscar D Lara and Miguel A Labrador. 2012. A mobile platform for real-time
human activity recognition. In IEEE CCNC. IEEE, 667–671.

[17] Oscar D Lara and Miguel A Labrador. 2012. A survey on human activity recogni-
tion using wearable sensors. IEEE Communications 15, 3 (2012), 1192–1209.

[18] Prajyot Mainkar and Salvatore Giordano. 2019. Google Flutter Mobile Development
Quick Start Guide. Packt Publishing Ltd.

[19] D.J.C. Matthies, G. Bieber, and U. Kaulbars. 2016. AGIS: automated tool detection
& hand-arm vibration estimation using an unmodified smartwatch. In iWOAR’16.

[20] Frances McKee-Ryan, Zhaoli Song, Connie RWanberg, and Angelo J Kinicki. 2005.
Psychological and physical well-being during unemployment: a meta-analytic
study. Journal of applied psychology 90, 1 (2005), 53.

[21] Maria D Molina and S Shyam Sundar. 2020. Can mobile apps motivate fitness
tracking? A study of technological affordances and workout behaviors. Health
communication 35, 1 (2020), 65–74.

[22] Melvin M Morrison. 1987. Inertial measurement unit. US Patent 4,711,125.
[23] A. Nagarkoti, R. Teotia, A.K. Mahale, and P.K. Das. 2019. Realtime indoor workout

analysis using machine learning & computer vision. In EMBC. IEEE, 1440–1443.
[24] T. Rath, J.K. Harter, and J. Harter. 2010. Wellbeing: The five essential elements.
[25] Chenguang Shen, Bo-Jhang Ho, and Mani Srivastava. 2017. Milift: Efficient

smartwatch-based workout tracking using automatic segmentation. IEEE TMC
17, 7 (2017), 1609–1622.

[26] Jo Thompson Coon, Kate Boddy, Ken Stein, Rebecca Whear, Joanne Barton, and
Michael H Depledge. 2011. Does participating in physical activity in outdoor
natural environments have a greater effect on physical and mental wellbeing than
physical activity indoors? A systematic review. ES&T 45, 5 (2011), 1761–1772.

[27] Michalis Vrigkas, Christophoros Nikou, and Ioannis A Kakadiaris. 2015. A review
of human activity recognition methods. Frontiers in Robotics and AI 2 (2015), 28.

[28] Hiroki Watanabe, Tsutomu Terada, and Masahiko Tsukamoto. 2013. Ultrasound-
based movement sensing, gesture-, and context-recognition. In ISWC’13. 57–64.

[29] Hongyi Wen, Julian Ramos Rojas, and Anind K Dey. 2016. Serendipity: Finger
gesture recognition using an off-the-shelf smartwatch. In CHI’16. 3847–3851.

[30] Jacob O Wobbrock. 2012. Seven research contributions in HCI. 1 (2012), 52–80.
[31] P. Zhu, H. Zhou, S. Cao, P. Yang, and S. Xue. 2018. Control with Gestures: A

Hand Gesture Recognition System Using Off-the-Shelf Smartwatch. In BIGCOM.

https://dart.dev

	Abstract
	1 Introduction
	2 Related Work
	2.1 Motion Sensing
	2.2 Sonic Sensing

	3 MotionFone
	3.1 Scope
	3.2 Model Development
	3.3 Real-Time Classifier

	4 SonicFone
	4.1 Scope
	4.2 Model Development
	4.3 Accuracy Results

	5 Conclusion & Future Work
	References

